Model Theory

Sheet 9

Deadline: 18.12.25, 2:30 pm.

Exercise 1 (12 points).

Given a structure \mathcal{M} in a language \mathcal{L} as well as a subset B of M, consider an indiscernible sequence $(a_n)_{n\in\mathbb{N}}$ over B in M.

- a) Show that the sequence of 2-tuples $(a_{2n}, a_{2n+1})_{n \in \mathbb{N}}$ is also indiscernible over B.
- b) Assume that there is an natural number n such that $\operatorname{tp}^{\mathcal{M}}(a_0 \dots a_n/B)$ is algebraic. Show that the sequence is constant.
- c) Describe all indiscernible sequences $(a_n)_{n\in\mathbb{N}}$ over $B=\emptyset$ in the \mathbb{Q} -vector space \mathbb{Q}^{20} (as a structure in the language of \mathbb{Q} -vector spaces).

From now on let $B = \emptyset$ and suppose that we are given an indiscernible sequence in M indexed by \mathbb{Z} , that is $(a_n)_{n \in \mathbb{Z}}$ is indiscernible over \emptyset . Furthermore we assume that $\mathcal{L} = \{R\}$ consists solely of a binary relation symbol. Consider a tuple $\bar{c} = (c_1, \ldots, c_m)$ from M.

- d) Assume that $R^{\mathcal{M}}$ is an equivalence relation with infinitely many classes which are all infinite. Show that there is a finite subset I of \mathbb{Z} such that the subsequence $(a_i)_{i \in \mathbb{Z} \setminus I}$ (with the induced ordering on $\mathbb{Z} \setminus I$) is indiscernible over c_1, \ldots, c_m .
- e) If $\mathcal{M} \models \text{DLO}$, give an example of an indiscernible sequence $(a_n)_{n \in \mathbb{Z}}$ over \emptyset and a tuple \bar{c} such that the conclusion from part d) is false. Moreover show that for every indiscernible sequence $(a_n)_{n \in \mathbb{Z}}$ there is N_0 from \mathbb{Z} such that the subsequence $(a_n)_{n > N_0}$ is indiscernible over c_1, \ldots, c_m .
- f) We now assume that \mathcal{M} is a countable random graph. Provide an example of sequence $(a_n)_{n\in\mathbb{Z}}$ which is indiscernible over \emptyset and a tuple \bar{c} such that the conclusion of part e) is false.

Exercise 2 (4 points).

A finite coloring of the natural number is a partition $\mathbb{N} = \bigcup_{i=1}^{n} C_i$ in disjoint subsets (or *colors*) C_i . Show that given any finite coloring of the natural numbers there is a monochromatic triple of the form $\{x, y, x + y\}$.

Hint: We color all 2-element subsets of \mathbb{N} with n colors such that $\{a,b\}$ has color i if |a-b| is in C_i .

(Please turn the page!)

THE EXERCISE SHEETS CAN BE HANDED IN IN PAIRS. SUBMIT THEM IN THE MAILBOX 3.19 IN THE BASEMENT OF THE MATHEMATICAL INSTITUTE.

Definition: A theory T in a given language \mathcal{L} has definable Skolem functions if for every formula $\psi(x,\bar{y})$ with x a single variable there is a formula $\theta_{\psi}(\bar{y},u)$ such that:

(i)
$$T \models \forall \bar{y} \left(\exists u \, \theta_{\psi}(\bar{y}, u) \land \forall u \, \forall v \left((\theta_{\psi}(\bar{y}, u) \land \theta_{\psi}(\bar{y}, v)) \rightarrow u = v \right) \right)$$

(ii)
$$T \models \forall \bar{y} (\exists x \, \psi(x, \bar{y}) \to \exists u \, (\psi(u, \bar{y}) \land \theta_{\psi}(\bar{y}, u)).$$

In other words, the formula $\theta_{\psi}(\bar{y}, u)$ defines the graph of a function that yields for every choice of parameters \bar{a} inside a given model of T an element in the definable set $\psi(x, \bar{a})$ if the latter is non-empty.

Exercise 3 (4 points).

Suppose that \mathcal{L} contains a binary relation symbol < and consider an \mathcal{L} -structure $\mathcal{N} = (\mathbb{N}, <^{\mathcal{N}}, \ldots)$ on the natural numbers such that < is interpreted as the usual order. Show that $T = \operatorname{Th}(\mathcal{N})$ has definable Skolem functions.